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Interaction between Unlike Nonpolar Molecules:

Correction of the Geometric Mean Rule

Part 1. Basic Derivations

E.SONNICH THOMSEN

The Royal Danish School of Pharmacy, Chemical Laboratory A, 2100 Copenhagen (), Denmark

It is proposed how to correct the geometric mean rule, which
is widely used for calculating interactions (dispersion forces, potential
functions, potential energies, unlike critical tem{)emtures) between
pairs of unlike molecules from those of the like molecules. The correc-
tion factors are expressed without further physical approximations
than already ap in the equations (e.g. the Slater-Kirkwood theory
for dispersion forces, and the Lennard-Jones (6—mn) potential) on
which the theory is based.

The usual way of estimating dispersion forces between two unlike nonpolar
molecules is to calculate these as the geometric mean of the dispersion
forces between the like molecules involved. Furthermore, this empirical
geometric mean rule is used for molecular properties related to dispersion
forces, for example the energy parameter ¢ of the pair potential function.

It is important, however, not to neglect small deviations from the geometric
mean rule. Energies of mixing, for example, calculated from the solubility
parameter equation, are typically increased by about 40 cal/mol for an equi-
molal mixture, when a 1 %, decrease of the unlike interactions is introduced.
Moreover, deviations up to 74 9, between experimental and calculated second
virial coefficients for nonpolar mixtures were demonstrated, when the
simple geometric mean rule was used.!

The purpose of this paper is to show how the geometric mean rule both
for dispersion forces and for related properties can be expressed in a formally
exact way, i.e. without more approximations than already appear in the well-
established theories used.

The discussion of the numerical aspects are deferred to part 2 (dilute
systems) and part 3 (dense systems) of this series.
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DISPERSION FORCES

The attraction coefficient in the Slater-Kirkwood ? theory for dispersion
forces between two isolated unlike molecules 1 and 2 is

Feya = (3eh/4m/ M) “osatg[(%y)21)* + (2xaf20)*] (1)
where « is the polarisability and » the number of electrons in the outer shells.

e and m are the charge and mass of the electron, respectively, and % is Plancks

constant.
The attraction coefficients for two isolated like molecules are k° (° indicates

a pure substance), and after a slight rearrangement we have
1=kye-(8my/m[3eh) (o)) (20)*  (1=1, 2) (2)

By multiplying the right.hand side of eqn. (1) with the geometric mean
of eqn. (2), with =1, and with =2, one obtains

kip=(k°yy-kop)t fr f, (3)

with the two correction factors defined
Jr=2[e00%/ (2¢19¢0) |14 [ (21 /%1)} + (o /%2) ] (4)
Ja=aqapfa a0y (5)

It should be stressed, however, that eqn. (3) is of little use until rules for cal-
culating «; and «, are given (see part 2).

A similar treatment, based on the simpler London theory 3 for dispersion
forces, was presented by Reed.%®

POTENTIAL FUNCTION

Lennard-Jones and Cook ¢ proposed as the potential function between

two spherical molecules
u(ry=j-r"—ko™ (6)

where 7 is the distance between the molecular centers, and j and & are con-
stants. Quantum theory ? requires m =6, but even though » often is assumed
to be 12, it is evident & that this might be a poor approximation, which will
not be used here. This means that the two-parameter theorem of correspond-
ing states is abandoned.

The parameters in eqn. (6) are not independent; let d,, be the value of
r, for which u,,(r) is minimum, then for two unlike molecules

Uyp(r) =kyp[ 67157 d "8 e — 1] (7)

An equivalent way to write this (6-n) potential function is
19(r) = [19/ (12— 6)] [6(d10/7)™2 — m15(d15/7)0] (8)

where u(d) = — ¢. By comparison of eqns. (7) and (8) one has
e19=Ky5°d1578 (M1 — 6)[my5 (9)

which for like molecules becomes
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&% =k +(doy) ™8 - (noy; — 6)[moy (10)
Using eqn. (3) we see that the geometric mean rule for ¢,, is
. . e1p= (11" )V i fo fd S (11)
in which are defined
Ja=[(d°yy-d°p)t[ds, P (12)
S = (1013 M0p5) 4 +(m15— 6)[ (15[ (101, — 6) (1095 — 6)]H) (13)

It is normally accepted that the distance parameter (d,,) of the intermolec-
ular potential function between unlike molecules should be calculated as an
arithmetical mean of the distance parameters of the like molecules (d°,, and
d°gy). This rule is exact for hard spheres, but even though its validity is not
settled for more realistic potentials it is without doubt a good approximation ®
and will be used here.

POTENTIAL ENERGIES

The potential energy of one mole 1-fluid with molal volume v, is, assuming
that potential energies are additive,

™ 27N 2
e = 2”N°2»/’911(7')'“11(7’)'7'2'(1"E = nre (14)
1 v )

51

where g(r) is the radial distribution function, and N, is Avogadro’s number.
The integral cannot be calculated immediately; it is therefore factorized
into an integral which is easy to calculate, and the function y which depends
on the radial distribution function (u(g)=0):

_ 27N,? “

= - 2.

e el fu(r) r2-dr (15)

Using a Lennard-Jones (6 —n) potential, the integration yields
e=—2nN?y-g-d®q/3v (16)

with
q=[n/(n—3)](n/6)>"® (17)
In the classical solubility parameter theory 191 it is assumed that

12421 = —2(|f11°]|f220|)} (18)

in which the symbols represent integrals of the same kind as in eqn. (14).
12, 21, 11, and 22 are the indices on g(r) and u(r). The correct from of eqn.
(18) is found to be (using the same procedure as previously in this paper)

N2+ 21 = = 2(|f10°]-|[22°)b-f of fa fu S (19)
in which are defined (f;-f,'f; was introduced by Reed %:5)
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Fo =312+ v21)/(¥°11¥°22)} (20)
Jo=lx012/(2°11°0%22)* (21)

CRITICAL TEMPERATURES

Chueh and Prausnitz?> and Brewer!® report deviations (which will be
utilized in part 2) from the geometric mean rule in terms of critical tempera-
tures, T'c.

Using the Lennard-Jones (6 —n) potential, eqn. (8), and the dilute-gas
approximation 7 for the radial distribution function

g(r) =exp{ —u(r)/kT} (22)
the integral of eqn. (14) is evaluated numerically in the range 9<n <30 and
0.8<T=kT|e<1.6. The results are fitted into

'—.ﬁj/(gij 'dija) =a’/i7ij2+b/%ij +9i,/3 (23)
a=0.0756 + 2.5856/(n;; + 4.6528) (24)
b=0.0988 + l.6228/(2nij-—4.6528) (25)

with an average numerical deviation of +0.14 9,

Let us at a given temperature, say T, assume that ev/(2nN2-d®-kT)
is independent of ¢ and =, so that eqn. (23) can be written (including the

normalisation i’CEkTC/s =1.3 for n=12)

a(Tey)+ b (T + g/ (3-T<;) = 0.6967 (26)

Finally, eqn. (11) and the relationship between Te and ¢ give
Teyp =Ty Tep) fr fuf Fnle (27)
fo =Ty (Tey, - Tepy)t (28)

in which T<,,, Ty, and T, are solutions to eqn. (26) for ny=n°y;, =n°y,
and =mn,,, respectively.
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